
Windows Help provides a complete set of functions necessary to display and
navigate Help files or other hypertext documents. In addition to the standard
functionality described in this guide, Windows Help also provides a set of custom
commands, or macros, that let Help authors control and customize Help
functionality.

This chapter describes the standard Help macros included with Windows Help
and explains how to use them in your Help file. Each Help macro has a different
purpose, and each can be used to improve the effectiveness and usability of your
finished Help file. But the real power of Help macros emerges when you combine
several macros to create unique (and sometimes amazing) features. The more
creative the Help author, the more powerful the Help macros become. And if you
find that the standard Help macro set falls short of your ultimate goal, you can
also create your own Help macros using DLL functions to provide just the right
effect for your Help file.

Before you read further, you might want to review the “Macro Quick Reference”

section, later in this chapter, to see what macros are available to you.

A macro is a custom-made command that you can use in a Help file to change the
way Windows Help works. A typical Help macro consists of a specific action that
Help performs when the macro is executed. In general, you use Help macros to:

n Customize the Help menu bar by creating and modifying your own
menus and menu items. You can also use macros to access the
standard menu functions and dialog boxes.

n Customize the Help button bar by changing the function of the
standard Help buttons or by creating and modifying your own custom
Help buttons. You can also use macros to access any of the button-
bar dialog boxes.

n Control the location and behavior of the main Help window or any
secondary windows you create.

Help Macros

___ Chapter 14

What Are Help Macros?

 Microsoft Windows Help Authoring Guide

n Create jumps to specific topics in a Help file or display specific
topics in pop-up windows.

n Save text markers at specific locations within the Help file, and then
create conditional jumps to those locations.

n Assign a keyboard access (accelerator) key or key combination to a
Help macro.

n Start other applications.
n Register a function within a dynamic-link library (DLL) and then use

the function as a custom Help macro.

When creating your Help files, you can make your Help macros execute by:

n Placing macros in the Help project file so that Windows Help
executes the macros whenever the user opens the Help file.

n Placing macros in a topic footnote so that the macros execute when
the user displays the topic.

n Configuring the menu bar and button bar so that Help executes a
macro when the user chooses the menu item or button.

n Adding hot spots to your topic that execute a macro when the user
chooses the hot spot.

n Using an external application to send a function call to Windows
Help that requests Help to execute a macro.

The following sections provide details about each of these methods.

Executing Help Macros

Help Macros§ 14-3
Note

Some Help macros don’t work when run from a pop-up or
secondary window. For example, macros that configure the menu bar or
button bar are ignored when run from a topic displayed in a pop-up or
secondary window. For each macro listed in Chapter 15, “Help Macro
Reference,” the “Comments” section indicates the situation(s) in which
the macro will not work. Before using any macro, you should review its
description in Chapter 15.

Executing Macros when Opening a Help File

If a macro appears in the [CONFIG] section of the Help project file, Windows
Help executes that macro when it first opens the Help file. If more than one
macro is listed in the [CONFIG] section, Windows Help executes them in the
order listed.

The following example shows two macros listed in the [CONFIG] section of a
sample Help project file:
[CONFIG]
FocusWindow("index")
SetHelpOnFile("APPHELP.HLP")

These macros perform the following operations:

n FocusWindow makes a secondary window called “index” the active
window.

n SetHelpOnFile replaces the standard How To Use Help file with a
customized version.

Executing Macros from a Topic Footnote

If a Help macro is included in a topic footnote, Windows Help executes that
macro when the user displays that topic. Users can execute a macro footnote in a
topic by:

n Choosing a hot spot that jumps to that topic.
n Choosing the Back button or a browse button.

 Microsoft Windows Help Authoring Guide

n Selecting a topic from the history list or keyword search list.
n Selecting a command or other feature in the application that is

programmed to display the topic.

Macro footnotes are executed only when the user first displays the topic, not
when the user completes any other action within the same topic.

You use an exclamation point (!) as the footnote character to execute topic-entry
macros.

To insert a topic-entry macro

1. Position the insertion point at the beginning of the topic (to the right
of the other footnotes).
2. From the Insert menu, choose Footnote.
The Footnote dialog box appears.
3. Type an exclamation point as the custom footnote mark, and then
choose OK.

A superscript exclamation point (!) appears in the text window, and
the insertion point moves to the footnote window.
4. Type the macro to the right of the exclamation point in the footnote
window.
Use only a single space between the exclamation point and the first
word of the macro. For example, you might type the following:

! SaveMark("Creating Groups")

Figure 14.1 shows this footnote window.

Graphic
Note that you can include spaces in macros.

For more information about how to insert macro footnotes in your Help topics,
see Chapter 6, “Creating Topics.”

Executing Macros from a Menu Item or Button

If a macro is defined for a menu item or button, Windows Help executes that
macro when the user chooses the menu item or button. The macros can be

Help Macros§ 14-5

defined in the [CONFIG] section of the Help project file or in a topic footnote.
Macros that affect Help buttons, menus, or menu items remain in effect until the
user displays a topic that changes the item’s function, opens a new Help file, or
quits Windows Help.

The following macro executes when the user chooses a menu item:

AppendItem("mnu_util", "mnu_icon", "&Create Icon", "ExecProgram(`imagedit.exe', 0)")

This macro performs the following operation:

n AppendItem adds an item to the Utilities menu that starts the
ImageEdit application when the user chooses the menu item.

The following macro executes when the user chooses a button:
ChangeButtonBinding("btn_contents", "JumpID(`hgcd.hlp', `acc_idx_hg')")

This macro performs the following operation:

n ChangeButtonBinding changes the standard function of the
Contents to jump to a specific topic within the Help file.

Executing Macros from a Hot Spot

Windows Help executes macro hot spots within a topic when the user chooses the
hot spot containing the macro. The topic displays continuously while Windows
Help executes the macro, unless the macro causes a jump to another topic.

Macro hot spots are formatted the same as jump hot spots–the hot spot (text or
bitmap reference) is formatted as double-underlined text and the macro string
(preceded by an exclamation point) is formatted as hidden text.

To create a macro hot spot in a topic

1. Select the macro hot-spot text.
2. From the Format menu, choose Character.
3. Select the Double Underline check box, and then choose OK.
4. Position the insertion point immediately after the last letter in the
double-underlined macro hot-spot text.
5. From the Format menu, choose Character again.
6. Clear the Double Underline check box, select the Hidden check box,

 Microsoft Windows Help Authoring Guide

and then choose OK.
7. Insert an exclamation point (!) as the first character of the macro
string.
Note The exclamation point must be formatted as hidden text.
8. Type the macro string that you want Help to execute when the user
chooses this hot-spot text.
Note You do not need to include a space between the exclamation
point and macro string.
9. From the Format menu, choose Character again, clear the Hidden
check box, and then choose OK.
Figure 14.2 shows a correctly coded macro hot spot in a topic file.

Graphic
For more information about how to include macro hot spots in your Help topics,
see Chapter 8, “Creating Links and Hot Spots.”

Executing Macros in a WinHelp Function Call

An application can send a HELP_COMMAND parameter in the WinHelp
function call that specifies a macro to execute. The WinHelp function uses the
following C-language syntax:

BOOL WinHelp (hWnd, lpHelpFile[>WindowName], wCommand, dwData)

When sending a macro request, the dwData parameter should point to a null-
terminated string that contains the macro. The macro string can have as many as
255 characters.

The following example uses a Help macro to specify the context string
IDM_HELP_KEYBOARD for the Keyboard topic in MYHELP.HLP:
case IDM_HELP_KEYBOARD:
 WinHelp (hWnd, "myhelp.hlp", HELP_COMMAND,
 (LPSTR) "JumpID(\"myhelp.hlp\",\"IDM_HELP_KEYBOARD\")");
 return 0L;

For more information about the WinHelp function, see Chapter 19, “The
WinHelp API.”

Help Macros§ 14-7

For those of you unfamiliar with programming
languages or macro languages, the Windows
Help macros may seem intimidating. The rules
for constructing macros are technical and
somewhat complex. The Help macros are

designed to imitate standard C-language format. However, the standard Help
macros do not support variables or expression evaluation.

Macro Guidelines

The following sections provide guidelines to follow when constructing Help
macros. Read each section carefully and study the examples.

Macro Syntax
Help macro statements have two main components: the macro name and the
macro parameters enclosed in parentheses. The most important rule to remember
is that the macro name must be spelled exactly as it is given in the syntax and the
parameters must be used in the order they are given in the syntax. Parameters
provide information for the macro; for example, the JumpId macro, which
executes a jump to a topic with a specific context string, has parameters for the
name of the Help file and the topic’s context string.

All Help macros use the following format (or syntax):

MacroName("parameter1", "parameter2", ...)
The entire macro, including macro name, parentheses, and parameter list, can
have a maximum of 512 characters. The opening parenthesis, closing parenthesis,
quotation marks, and commas are required characters when included in the
syntax statement for a macro.

Macro names are not case sensitive, so you can either use the capitalization
shown in Chapter 15, “Help Macro Reference,” or you can adopt a different
convention. For example, you can use any of the following forms:
IfThenElse
ifthenelse
IFTHENELSE
IFthenELSE

The parameter list consists of a series of parameters separated by commas.
Parameters can be text strings or numbers. For example, the following macro
creates a custom Help menu called Utilities:
InsertMenu("menu_util", "&Utilities", 3)

Constructing Help Macros

 Microsoft Windows Help Authoring Guide

Some macros have no parameters, but the parentheses are still required. For
example, the following macro displays the Search dialog box:
Search()

If you create custom macros, the macro name should begin with an alpha
character, followed by any combination of alpha characters, numbers, or the
underscore character, as in this example:
PlayAudio()

You can include more than one macro in a macro string by placing a semicolon
(;) between each macro in the string. The Help compiler processes the macro
strings as a unit and executes the macros sequentially. The following macro
contains three different macro strings:
ChangeButtonBinding("btn_contents", "JumpID(`hgcd.hlp', `acc_idx_hg')");
EnableButton("btn_up"); ChangeButtonBinding("btn_up", "JumpID(`cdcd.hlp', `hlpidx_idx_card')")

Using String Parameters
You must enclose all string parameters within quotation marks. Quotation marks
can be either double quotation marks or matching single quotation marks, as
follows:
"string parameter"

`string parameter'

Note

On US keyboards, the single opening quotation mark is different
from the single closing quotation mark. The single opening quotation
mark (`) is paired with the tilde (~) above the TAB key on extended
keyboards; the single closing quotation mark ('), or apostrophe, is
paired with the double quotation mark.

For example, the JumpId macro takes two string parameters enclosed in double
quotation marks:
JumpID("hgcd.hlp", "acc_idx_hg")

You can also enclose the string parameters in single quotation marks, as follows:
JumpID(`hgcd.hlp', `acc_idx_hg')

Using the single quotation marks eliminates ambiguities in situations where

Help Macros§ 14-9

strings are nested within other strings (see the following section).

Nested Macros and Nested String Parameters
Help supports nested macros, a macro that is included in another macro as a
parameter value. Because nested macros often have their own string parameters,
you must frequently specify a string enclosed within another string.

For example, the following macro creates a button called Time that uses the
ExecProgram macro as a parameter. When the user chooses the button, Help
starts the Microsoft Windows Clock application. Since the ExecProgram macro
takes a string as its first parameter, the string is enclosed in single quotation
marks:
CreateButton("btn_time", "&Time", "ExecProgram(`clock', 0)")

If the nested macro has any string parameters, they must have quotation marks
that are different from the enclosing macro quotation marks. In other words, if
double quotation marks enclose a macro, you must enclose any nested strings in
single quotation marks.

You can also use single quotation marks for the outermost parameters. The
following example produces the same results as the previous one:
CreateButton(`btn_time', `&Time', `ExecProgram(`clock', 0)')

You can avoid confusion with nested string parameters by using single quotation
marks for all string parameters. Just be sure to match the opening and closing
quotation marks correctly.

Some Incorrect Examples

The following example is incorrect because the “clock” string is enclosed in
double quotation marks, even though it is nested within another string delimited
by double quotation marks:
CreateButton("btn_time", "&Time", "ExecProgram("clock", 0)")

The following example is also incorrect because the “clock” string is enclosed in
single quotation marks that are not matched correctly (two closing quotation
marks):
CreateButton("btn_time", "&Time", `ExecProgram('clock', 0)')

The “ExecProgram(” string will be interpreted as the third parameter, and the rest
of the string will produce a syntax error.

 Microsoft Windows Help Authoring Guide

Some Complex Examples

You can use single quotation marks at any level of nesting. For example, the
following macro creates a menu item that, when chosen, creates a button that,
when chosen, displays the Windows Clock:
AppendItem("mnu_fun", "mnu_fun_makebutton", "Display Clock &button",
"CreateButton(`btn_time', `&Time',`ExecProgram(`clock', 0)')")

Macro strings may not contain more than three other macro strings as parameters.
The following macro shows the correct way to nest macros:
IfThen(1, `IfThen(1, `IfThen(IsMark(`Managing Memory'), `JumpId(`trb.hlp', `man_mem')')')')

The following macro string is nested too deeply:
IfThen(1, `IfThen(1, `IfThen(1, `IfThen(1, `BrowseButtons()')')')')

Note

The Help compiler displays an error message if macros are
nested too deeply, but it passes the macro to the Help file. The Help
application, however, does not display an error message if the macro
string is nested too deeply. Therefore, both of the above macros would
supposedly work, even though one generates an error message during
compilation and one does not.

Using Special Characters in Strings
To use certain characters as values within a macro string, you must preface the
character with a backslash. (Adding a backslash before a character is known as
“escaping” the character.) Use the following guidelines when using the double
quotation mark ("), single opening quotation mark (`), single closing quotation
mark ('), and backslash (\) in macros:

n To use a backslash in a string parameter, you must type two
backslashes.

In the following example, the JumpContents macro string includes
two backslashes for each backslash character to specify the \\ROOT\
PROJECT\SUBDIR\MYHELP.HLP network path for a Help file:

JumpContents("\\\\root\\project\\subdir\\myhelp.hlp")

n To use a double quotation mark within a string that is enclosed in

Help Macros§ 14-11

double quotation marks, you must preface the double quotation mark
with a backslash:

"Chapter 8, \"Making Links Between Topics\""

If you must use quotation marks as part of the parameter, you can
enclose the entire parameter in single quotation marks and omit the
backslash escape character required for the double quotation marks
delimiting the string:

ExecProgram(`command "string as parameter"', 0)

n To use a single quotation mark within a string that is enclosed in
single quotation marks, you must preface the single quotation mark
with a backslash:

`This isn\'t easy'

You don’t have to use this form in a string delimited with double
quotation marks. For example, you could use the following string in
place of the previous example:

"This isn't easy"

n You never have to escape commas (,) or parentheses () within a
macro string.

Using Numeric Parameters
Help recognizes decimal and hexadecimal numbers for numeric parameters. Use
a prefix of 0x to indicate a hexadecimal number. For example, the following
numbers both represent decimal 64:
64
0x40

To specify a negative number, add a minus sign before the number. For example,
the following numbers both specify decimal —18:
—18
—0x12

 Microsoft Windows Help Authoring Guide
Note

To accept a negative number, you must specify a numeric
parameter as a signed number. If you use a negative number with an
unsigned parameter, Help displays a “Parameter type wrong” error
message.

Making Arbitrary DLL Calls in Help Macros
You can make arbitrary DLL calls only if you inform Help about the call by
using the RegisterRoutine macro. For example, Microsoft Help Author defines a
function called ClearRTFEditor with one valid parameter–a null string:
[CONFIG]
RegisterRoutine("hcparse.dll", "ClearRTFEditor", "")

For more information, see “Using DLL Calls as Help Macros,” later in this
chapter.

Return Values in Help Macros
Generally, Help ignores return values in macros. However, the IsMark and
IfThenElse macros can be used together to test a condition and execute a macro
if the condition evaluates to a nonzero, or true, value. The following example
shows a typical use of IsMark and IfThenElse:
IfThenElse(IsMark("Managing Memory"),"JumpID(`trb.hlp',`man_mem')",
"JumpContents(`trb.hlp')")

The first parameter of the IfThenElse macro is a number. Since IsMark returns a
number, it can be used as the first parameter. Help executes the IsMark and
IfThenElse macros as follows:

1. Help executes the IsMark macro and obtains a numeric return value
from it.
2. Help executes the IfThenElse macro. Help passes the number
returned from IsMark to the first parameter and passes the JumpId and
JumpContents macro strings to the second and third parameters.
3. If the number passed to the first parameter is not zero, the
IfThenElse macro executes the JumpID macro; otherwise, it executes
the JumpContents macro.

Help Macros§ 14-13
Note

In this example, the use of the IsMark macro differs from the
use of the jump macros. Help does not use the return values of the
JumpID and JumpContents macros in the IfThenElse macro. Since
they are enclosed in quotation marks, Help treats them as simple
strings, not as macros.

Note

You can also use DLL calls as conditions for the IfThen and
IfThenElse macros.

Macro Error Checking

The Windows Help compiler checks the validity of each macro included in a
build of the Help file during compilation. If the compiler finds an error, it gives
an error message and continues the build. The compiler checks for the following:

n If the macro name is spelled correctly
n If the macro syntax is correct–matching parentheses, matching

quotation marks, or missing commas
n If the macro has the correct number of parameters
n If the parameter type matches the specified type–numeric or string,

for example
n If the prototype is valid for a RegisterRoutine macro

Although the Help compiler can check for these predictable errors, as the Help
author you are responsible for verifying that the macros you use work correctly in

the built Help file.

If you want to add a certain feature to your Help file that Windows Help does not

Using DLL Calls as Help Macros

 Microsoft Windows Help Authoring Guide

support, and you have programming experience for Windows (or access to
someone who does), you can develop custom extensions to support the functions
you need. Extending Help involves using the Windows software libraries, called
dynamic-link libraries (DLLs). These libraries are commonly used in Windows
applications, and most programmers for Windows are familiar with their
construction and use. You can use calls to functions in the DLLs as Help macros
by registering the functions in the Help project file.

This section provides a general discussion of these tools and describes the
authoring tasks related to using DLLs in a Help file. As a Help author, you should
understand the capabilities of these tools. To develop your Help file to its fullest
potential, you’ll want to be fully informed about the opportunities they present.

Using DLLs in Help

Help provides the following mechanisms for calling DLL routines:

n You use the RegisterRoutine macro to identify a DLL routine to be
called from the Help file as a Help macro.

n You can create an embedded window in a topic and use a DLL to
control the objects displayed in the embedded window.

Many Windows-based programs use DLLs. A DLL is a library of programming
routines that is automatically loaded when needed. DLLs are useful because they
can use memory efficiently, and their routines can be called from multiple
applications.

Figure 14.3 illustrates the two DLL interfaces.

GRAPHIC
In the example, EWDEMO.DLL contains routines to display a list of printers in
the special embedded window. MMLIB.DLL contains a PlayAudio routine that is
registered in the Help project file and is called using a macro hot spot.

The following sections describe the two DLL interfaces. For important
information about writing DLLs to support external macros and embedded
windows, see Chapter 20, “Writing DLLs for Windows Help.”

Help Macros§ 14-15

Registering DLL Routines

If you create a DLL for use with Windows Help, you can identify the functions
within the DLL. The RegisterRoutine macro gives you the power to extend
Windows Help using your own DLLs. After you register a DLL function with
Windows Help, you can create menu items or macro buttons that execute the
function. In this way, you can offer specialized capabilities that are not offered in
the standard Windows Help application and make them available to users of your
Help file.

When registering a DLL function, you provide Help the following information:

n DLL filename
n Function name
n Data type returned by the function
n Number and type of function parameters

To register the DLL function, you enter a RegisterRoutine macro in the
[CONFIG] section of the Help project file. (If you don’t register the DLL
function in the [CONFIG] section, you must register it another way before using
the function.) The RegisterRoutine macros are executed when the Help file is
opened, so the registered functions are available during the entire Help session.
You must register a DLL routine before using it, or the Help compiler will report
an error when it encounters the unregistered macro in the RTF source files and
the macro will not work when executed in the built Help file.

The RegisterRoutine macro has the following syntax:

RegisterRoutine("DLL-name", "function-name", "parameter-spec")

Parameter Description

DLL-name String specifying the name of the DLL in which the function
resides. The filename must be enclosed in quotation marks. You
can omit the .DLL filename extension.

Specify the directory only if necessary. Generally, DLLs are
installed in the directory where Windows Help resides. For more
information, see the following section.

function-name String specifying the name of the function to use as a Help macro.

 Microsoft Windows Help Authoring Guide

The function name must be enclosed in quotation marks.

parameter-spec String specifying the formats of parameters passed to the function.
Characters in the string represent C parameter types.

For complete information on the RegisterRoutine macro, see Chapter 15, “Help
Macro Reference.”

How Help Locates .DLL and .EXE Files

When executing custom DLLs and applications using the RegisterRoutine and
ExecProgram macros, Windows Help loads .DLL and .EXE files only when
they are needed by the Help file. To load a DLL or application, Help must be able
to find it on the user’s system. When preparing to use a .DLL or .EXE file, Help
looks in the following locations:

n Help’s current directory
n The MS-DOS current directory
n The user’s Windows directory
n The Windows SYSTEM directory
n The directory containing WINHELP.EXE
n The directories listed in the user’s PATH environment variable
n The directories specified in WINHELP.INI
If Help cannot find the .DLL or .EXE file after searching in all these locations, it
displays an error message.

To increase the likelihood that Help will locate the .DLL or .EXE file quickly,
follow these guidelines:

n Use unique names for all .DLL and .EXE files accessed by the Help
file.

n When installing your application on a user’s hard disk drive, your
setup program should copy all custom DLLs and executable files to
the directory where Help is located.

n If your product is distributed on CD-ROM, copy the WINHELP.EXE

Help Macros§ 14-17

and custom .DLL and .EXE files to the user’s hard disk drive.
n Define a WINHELP.INI entry for each custom .DLL or .EXE file

that your Help file is using so that Help knows where to locate them.

For an explanation of the WINHELP.INI file, see “Creating Links Between Help
Files” in Chapter 8, “Creating Links and Hot Spots”.

Windows Help Internal Variables

Windows Help defines a series of internal variables that you can use with macros.
After you register a DLL function as a Help macro, you can specify the Windows
Help internal variables as parameters to that function when the function appears
in hot spots or macro footnotes. These variables are always available, and their
values change depending on the current state of the Help file. Many DLL
routines, as well as some standard Help macros, require the information residing
in these variables.

You can use any of the following Windows Help internal variables in DLL
functions.

Variable Format spec Description

hwndApp U Number specifying the handle (a
numeric identifier used by
Windows) to the main Help window.
This variable is guaranteed to be
valid only while the DLL function is
executing.

hwndContext U Number specifying the handle of the
Help window (either the main Help
window or a secondary window)
that is active at the time the DLL is
called.

qchPath S String specifying a fully qualified
path of the currently open Help file.

 Microsoft Windows Help Authoring GuideqError U Long pointer to a structure
containing information about the
most recent Windows Help error.

lTopicNo U Number specifying the current topic
number. This number is relative to
the order of topics in the RTF files
used to build the Help file. The
current topic is the topic displayed in
the Help window that is active when
the DLL is called.

hfs U Number specifying the handle (a
numeric identifier used by
Windows) to the file system for the
currently open Help file.

coForeground U Number specifying the RGB value
of the foreground color of the
window that is active when the DLL
is called.

coBackground U Number specifying the RGB value
of the background color of the
window that is active when the DLL
is called.

For more information about Windows Help internal variables in DLL calls, see

Chapter 20, “Writing DLLs for Windows Help.”

The tables in this Quick Reference organize the Help macros according to
function so that you can get a quick overview of the related macros you may want
to use to achieve certain effects when customizing your Help file. Refer to

Macro Quick Reference

Help Macros§ 14-19

Chapter 15, “Help Macro Reference,” for full details about each macro.

Button Macros

Use the following macros to access standard Help buttons, to create new buttons,
or to modify button functionality.

Back Displays the previous topic in the Back list.

BrowseButtons Adds the Browse buttons to the Help button bar.

ChangeButtonBinding Changes the assigned function of a Help button.

Contents Displays the Contents topic of the current Help file.

CreateButton Creates a new button and adds it to the button bar.

DestroyButton Removes a button from the button bar.

DisableButton Disables a button on the button bar.

EnableButton Enables a disabled button.

History Displays the history list.

 Microsoft Windows Help Authoring Guide

Next Displays the next topic in a browse sequence.

Prev Displays the previous topic in a browse sequence.

Search Displays the Search dialog box.

SetContents Designates a specific topic as the Contents topic.

Menu Macros

Use the following macros to access standard Help menu items, to create new
menus and menu items, or to modify menus and menu items.

About Displays the About dialog box.

Annotate Displays the Annotate dialog box.

AppendItem Appends a menu item to the end of a custom menu.

BookmarkDefine Displays the Bookmark Define dialog box.

Help Macros§ 14-21

BookmarkMore Displays the Bookmark dialog box.

ChangeItemBinding Changes the assigned function of a menu item.

CheckItem Displays a check mark next to a menu item.

CopyDialog Displays the Copy dialog box.

CopyTopic Copies the current topic to the Clipboard.

DeleteItem Removes a menu item from a menu.

DisableItem Disables a menu item.

EnableItem Enables a disabled menu item.

Exit Exits the Windows Help application.

FileOpen Displays the Open dialog box.

 Microsoft Windows Help Authoring GuideHelpOn Displays the How To Use Help file.

InsertItem Inserts a menu item at a given position on a menu.

InsertMenu Adds a new menu to the Help menu bar.

Print Sends the current topic to the printer.

PrinterSetup Displays the Print Setup dialog box.

SetHelpOnFile Specifies a custom How To Use Help file.

UncheckItem Removes a check mark from a menu item.

Linking Macros

Use the following macros to create hypertext links to specific Help topics.

JumpContents Jumps to the Contents topic of a specific Help file.

JumpContext Jumps to the topic with a specific context number.

Help Macros§ 14-23JumpHelpOn Jumps to the Contents of the How To Use Help file.

JumpId Jumps to the topic with a specific context string.

JumpKeyword Jumps to the first topic containing a specified
keyword.

PopupContext Displays the topic with a specific context number in a
pop-up window.

PopupId Displays the topic with a specific context string in a
pop-up window.

Window Macros

Use the following macros to control or modify the behavior of the main Help
window or secondary Help windows.

CloseWindow Closes the main or secondary Help window.

FocusWindow Changes the focus to a specific Help window.

HelpOnTop Places all Help windows on top of other windows.

PositionWindow Sets the size and position of a Help window.

 Microsoft Windows Help Authoring Guide

Keyboard Macros

Use the following macros to add keyboard access to a Help macro.

AddAccelerator Assigns an accelerator key to a Help macro.

RemoveAccelerator Removes an accelerator key from a Help macro.

Auxiliary Macros

Use the following macros to access applications and functionality not available in
Windows Help.

ExecProgram Starts an application.

RegisterRoutine Registers a function within a DLL as a Help macro.

Text-Marker Macros

Use the following macros to create and manipulate text markers.

DeleteMark Removes a marker added by SaveMark.

GotoMark Executes a jump to a marker set by SaveMark.

IfThen Executes a Help macro if a given marker exists.

Help Macros§ 14-25

IfThenElse Executes one of two macros if a given marker exists.

IsMark Tests whether a marker set by SaveMark exists.

Not Reverses the result returned by IsMark.

SaveMark Saves a marker for the current topic and Help file.

Ó 1993 Microsoft Corporation, All rights reserved

	Help Macros
	What Are Help Macros?
	Executing Help Macros
	Constructing Help Macros
	Using DLL Calls as Help Macros
	Macro Quick Reference
	n Customize the Help menu bar by creating and modifying your own menus and menu items. You can also use macros to access the standard menu functions and dialog boxes.
	n Customize the Help button bar by changing the function of the standard Help buttons or by creating and modifying your own custom Help buttons. You can also use macros to access any of the button-bar dialog boxes.
	n Control the location and behavior of the main Help window or any secondary windows you create.
	n Create jumps to specific topics in a Help file or display specific topics in pop-up windows.
	n Save text markers at specific locations within the Help file, and then create conditional jumps to those locations.
	n Assign a keyboard access (accelerator) key or key combination to a Help macro.
	n Start other applications.
	n Register a function within a dynamic-link library (DLL) and then use the function as a custom Help macro.
	n Placing macros in the Help project file so that Windows Help executes the macros whenever the user opens the Help file.
	n Placing macros in a topic footnote so that the macros execute when the user displays the topic.
	n Configuring the menu bar and button bar so that Help executes a macro when the user chooses the menu item or button.
	n Adding hot spots to your topic that execute a macro when the user chooses the hot spot.
	n Using an external application to send a function call to Windows Help that requests Help to execute a macro.
	Executing Macros when Opening a Help File
	n FocusWindow makes a secondary window called “index” the active window.
	n SetHelpOnFile replaces the standard How To Use Help file with a customized version.

	Executing Macros from a Topic Footnote
	n Choosing a hot spot that jumps to that topic.
	n Choosing the Back button or a browse button.
	n Selecting a topic from the history list or keyword search list.
	n Selecting a command or other feature in the application that is programmed to display the topic.
	1. Position the insertion point at the beginning of the topic (to the right of the other footnotes).
	2. From the Insert menu, choose Footnote.
	3. Type an exclamation point as the custom footnote mark, and then choose OK.
	4. Type the macro to the right of the exclamation point in the footnote window.

	Executing Macros from a Menu Item or Button
	n AppendItem adds an item to the Utilities menu that starts the ImageEdit application when the user chooses the menu item.
	n ChangeButtonBinding changes the standard function of the Contents to jump to a specific topic within the Help file.

	Executing Macros from a Hot Spot
	1. Select the macro hot-spot text.
	2. From the Format menu, choose Character.
	3. Select the Double Underline check box, and then choose OK.
	4. Position the insertion point immediately after the last letter in the double-underlined macro hot-spot text.
	5. From the Format menu, choose Character again.
	6. Clear the Double Underline check box, select the Hidden check box, and then choose OK.
	7. Insert an exclamation point (!) as the first character of the macro string.
	8. Type the macro string that you want Help to execute when the user chooses this hot-spot text.
	9. From the Format menu, choose Character again, clear the Hidden check box, and then choose OK.

	Executing Macros in a WinHelp Function Call
	Macro Guidelines
	Macro Syntax
	Using String Parameters
	Nested Macros and Nested String Parameters
	Some Incorrect Examples
	Some Complex Examples

	Using Special Characters in Strings
	n To use a backslash in a string parameter, you must type two backslashes.
	n To use a double quotation mark within a string that is enclosed in double quotation marks, you must preface the double quotation mark with a backslash:
	n To use a single quotation mark within a string that is enclosed in single quotation marks, you must preface the single quotation mark with a backslash:
	n You never have to escape commas (,) or parentheses () within a macro string.
	Using Numeric Parameters
	Making Arbitrary DLL Calls in Help Macros
	Return Values in Help Macros
	1. Help executes the IsMark macro and obtains a numeric return value from it.
	2. Help executes the IfThenElse macro. Help passes the number returned from IsMark to the first parameter and passes the JumpId and JumpContents macro strings to the second and third parameters.
	3. If the number passed to the first parameter is not zero, the IfThenElse macro executes the JumpID macro; otherwise, it executes the JumpContents macro.

	Macro Error Checking
	n If the macro name is spelled correctly
	n If the macro syntax is correct–matching parentheses, matching quotation marks, or missing commas
	n If the macro has the correct number of parameters
	n If the parameter type matches the specified type–numeric or string, for example
	n If the prototype is valid for a RegisterRoutine macro

	Using DLLs in Help
	n You use the RegisterRoutine macro to identify a DLL routine to be called from the Help file as a Help macro.
	n You can create an embedded window in a topic and use a DLL to control the objects displayed in the embedded window.

	Registering DLL Routines
	n DLL filename
	n Function name
	n Data type returned by the function
	n Number and type of function parameters

	How Help Locates .DLL and .EXE Files
	n Help’s current directory
	n The MS-DOS current directory
	n The user’s Windows directory
	n The Windows SYSTEM directory
	n The directory containing WINHELP.EXE
	n The directories listed in the user’s PATH environment variable
	n The directories specified in WINHELP.INI
	n Use unique names for all .DLL and .EXE files accessed by the Help file.
	n When installing your application on a user’s hard disk drive, your setup program should copy all custom DLLs and executable files to the directory where Help is located.
	n If your product is distributed on CD-ROM, copy the WINHELP.EXE and custom .DLL and .EXE files to the user’s hard disk drive.
	n Define a WINHELP.INI entry for each custom .DLL or .EXE file that your Help file is using so that Help knows where to locate them.

	Windows Help Internal Variables
	Button Macros
	Menu Macros
	Linking Macros
	Window Macros
	Keyboard Macros
	Auxiliary Macros
	Text-Marker Macros

